
Modify BNF 7.2, 7.3, A.2.2.1:

struct_union ::= struct | union [soft | tagged]

Modify BNF footnote 16:

Current:
When a packed dimension is used with the struct or union keyword, the packed keyword shall also be used.

New:
When a packed dimension is used with the struct keyword, the packed keyword shall also be used. When a packed

dimension is used with the union keyword, the soft and/or packed keyword shall also be used.

Modify 7.3.1:

Current:
Packed unions shall only contain members that are of integral data types. The members of a packed,

untagged union shall all be the same size (in contrast to an unpacked union or a packed, tagged union, where

the members can be different sizes). Thus, a union member that was written as another member can be read

back. A packed union differs from an unpacked union in that when a packed union appears as a primary, it

shall be treated as a single vector.

A packed union can also be used as a whole with arithmetic and logical operators, and its behavior is

determined by its signedness, with unsigned being the default. One or more bits of a packed union can be

selected as if it were a packed array with the range [n-1:0].

Only packed data types and the integer data types summarized in Table 6-8 (see 6.11) shall be legal in

packed unions.

If a packed union contains a 2-state member and a 4-state member, the entire union is 4-state. There is an

implicit conversion from 4-state to 2-state when reading and from 2-state to 4-state when writing the 2-state

member.

For example, a union can be accessible with different access widths:

typedef union packed { // default unsigned

 s_atmcell acell;

 bit [423:0] bit_slice;

 bit [52:0][7:0] byte_slice;

} u_atmcell;

u_atmcell u1;

byte b; bit [3:0] nib;

b = u1.bit_slice[415:408]; // same as b = u1.byte_slice[51];

nib = u1.bit_slice [423:420]; // same as nib = u1.acell.GFC;

With packed unions, writing one member and reading another is independent of the byte ordering of the

machine, unlike an unpacked union of unpacked structures, which are C-compatible and have members in

ascending address order.

New:
Packed unions shall only contain members that are of integral data types (see 6.11.1). Unlike unpacked and tagged

unions, packed untagged unions allow a union member that was written as another member to be read back. Two

forms of packed untagged unions are supported: hard packed and soft packed. When the packed qualifier is used

without the soft qualifier on an untagged union, the union is hard packed and members of that union shall all be

the same size. When the soft qualifier is used on an untagged union, the union is soft packed and members of that

union do not have to be of the same size. Since the soft qualifier indicates that the union is soft packed, the

packed qualifier may be omitted when the soft qualifier is used.

The members of a packed, untagged union shall all be the same size. (in contrast to an unpacked union, or a packed,

tagged union, where the members can be different sizes). Thus, a union member that was written as another member

can be read back. A packed union differs from an unpacked union in that when a packed union appears as a

primary, it shall be treated as a single vector.

A packed union differs from an unpacked union in that when a packed union appears as a primary, it shall be treated

as a single vector. A packed union can also be used as a whole with arithmetic and logical operators, and its

behavior is determined by its signedness, with unsigned being the default. One or more bits of a packed union can be

selected as if it were a packed array with the range [n-1:0].

Only packed data types and the integer data types summarized in Table 6-8 (see 6.11) shall be legal in

packed unions.

If a packed union contains a 2-state member and a 4-state member, the entire union is 4-state. There is an implicit

conversion from 4-state to 2-state when reading and from 2-state to 4-state when writing the 2-state member.

For example, a packed union can be accessible with different access widths:

typedef union packed { // default unsigned

 s_atmcell acell;

 bit [423:0] bit_slice;

 bit [52:0][7:0] byte_slice;

} u_atmcell;

u_atmcell u1;

byte b; bit [3:0] nib;

b = u1.bit_slice[415:408]; // same as b = u1.byte_slice[51];

nib = u1.bit_slice [423:420]; // same as nib = u1.acell.GFC;

With packed unions, writing one member and reading another is independent of the byte ordering of the machine,

unlike an unpacked union of unpacked structures, which are C-compatible and have members in ascending address

order.

The representation for a packed union with the soft qualifier is the following:

— The size is equal to the number of bits needed to represent the maximum of the

sizes of the members.

— The bits of each member are right-justified [i.e., towards the least significant bits (LSBs)].

The representation scheme is applied recursively to any nested soft packed unions.

For example:

typedef union soft packed {

 struct packed {

 bit [4:0] valA, valB, valC;

 } D1;

 struct packed {

 bit[1:0] valX;

 union soft {

 bit [9:0] F1;

 bit [7:0] F2;

 } valY;

 } D2;

} Data_u;

The values for the Data_u type will have the layouts shown in figure 7-1

5 5 5

valA valB valC D1

3 2 10

 valX valY.F1 D2 (with valY.F1)

3 2 2 8

 valX valY.F2 D2 (with valY.F2)
Figure 7-1 —Data_u type with soft packed qualifier

When assigning to a member of a packed union with the soft qualifier, the value of any MSBs beyond the member

bits are unaffected.

Note to the editor: The shading in the above Figure 7-1 should be carried into the pre-existing figures

(now 7-2 and 7-3).

Modify 7.3.2 (Tagged unions):

Current
When the packed qualifier is used on a tagged union, all the members shall have packed types, but they do

not have to be of the same size. The (standard) representation for a packed tagged union is the following:

— The size is always equal to the number of bits needed to represent the tag plus the maximum of the

sizes of the members.

— The size of the tag is the minimum number of bits needed to code for all the member names (e.g.,

five to eight members would need 3 tag bits).

— The tag bits are always left-justified (i.e., towards the MSBs).

— For each member, the member bits are always right-justified [i.e., towards the least significant bits

(LSBs)].

— The bits between the tag bits and the member bits are undefined. In the extreme case of a void

member, only the tag is significant and all the remaining bits are undefined.

The representation scheme is applied recursively to any nested tagged unions.

For example, if the VInt type definition had the packed qualifier, Invalid and Valid values will have the

layouts shown in Figure 7-1, respectively.

< Figure 7-1 >

For example, if the Instr type had the packed qualifier, its values will have the layouts shown in

Figure 7-2

< Figure 7-2 >

New
When the packed qualifier is used on a tagged union, all the members shall have packed types, but they do

not have to be of the same size

Like soft packed untagged unions, members of tagged unions with the packed qualifier shall have packed types, but

do not have to be of the same size. The (standard) representation for a packed tagged union is the following:

— The size is always equal to the number of bits needed to represent the tag plus the maximum of the

sizes of the members.

— The size of the tag is the minimum number of bits needed to code for all the member names (e.g.,

five to eight members would need 3 tag bits).

— The tag bits are always left-justified (i.e., towards the MSBs).

— For each member, the member bits are always right-justified [i.e., towards the least significant bits

(LSBs)].

— The bits of each member are right-justified [i.e., towards the least significant bits (LSBs)].

— The bits between the tag bits and the member bits are undefined. In the extreme case of a void

member, only the tag is significant and all the remaining bits are undefined.

The representation scheme is applied recursively to any nested tagged unions.

For example, if the VInt type definition had the packed qualifier, Invalid and Valid values will have the

layouts shown in Figure 7-1, respectively.

< Figure 7-1 >

For example, if the Instr type had the packed qualifier, its values will have the layouts shown in

Figure 7-2

< Figure 7-2 >

